Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(40): 24845-24851, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36196615

RESUMO

In this study, X-ray photoelectron spectroscopy is used to analyse nine morpholinium ionic liquids, which are of great interest in green chemistry because of their low toxicity and high recyclability. The effect of the alkyl chain length on the aliphatic C 1s binding energy and the impact of the anion basicity on the cationic N 1s and O 1s binding energies are investigated. It is concluded that by changing the basicity of the anion, there is a more notable change in the electronic environment of the oxygen centre. The impact of a long alkyl side substituent on the cation-anion interactions is also discussed. It is observed that there is an intense charge shielding effect of the alkyl side chain in the cases of octyl and dodecyl substituents, which is reflected in the reduced Br 3d5/2 binding energy.

2.
Org Process Res Dev ; 26(9): 2749-2755, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36158466

RESUMO

The Alder-ene reaction of neat polyisobutylene (PIB) and maleic anhydride (MAA) to produce the industrially important lubricant additive precursor polyisobutylene succinic anhydride (PIBSA) is studied at 150-180 °C. Under anaerobic conditions with [PIB] ∼ 1.24 M (550 g mol-1 grade, >80% exo alkene) and [MAA] ∼ 1.75 M, conversion of exo-PIB and MAA follows second-order near-equal rate laws with k obs up to 5 × 10-5 M-1 s-1 for both components. The exo-alkene-derived primary product PIBSA-I is formed at an equivalent rate. The less reactive olefinic protons of exo-PIB also react with MAA to form isomeric PIBSA-II (k obs up to 6 × 10-5 M-1 s-1). Some exo-PIB is converted to endo-PIB (containing trisubstituted alkene) in a first-order process (k obs ∼ 1 × 10-5 s-1), while PIBSA-I is difunctionalized by MAA to bis-PIBSAs very slowly. The MAA- and PIB-derived activation parameter ΔG ‡(150 °C) 34.3 ± 0.3 kcal mol-1 supports a concerted process, with that of PIBSA-I suggesting a late (product-like) transition state.

3.
Organometallics ; 41(7): 883-891, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35571260

RESUMO

Quantitative catalytic nucleophilic fluorination of a range of acyl chlorides to acyl fluorides was promoted by a cyclometallated rhodium complex [(η5,κ2C-C5Me4CH2C6F5CH2NC3H2NMe)- RhCl] (1). 1 can be prepared in high yields from commercially available starting materials using a one-pot method. The catalyst could be separated, regenerated, and reused. Rapid quantitative fluorination generated the fluoride analogue of the active pharmaceutical ingredient probenecid. Infrared in situ monitoring verified the clean conversion of the substrates to products. VTNA graphical kinetic analysis and DFT calculations lead to a postulated reaction mechanism involving a nucleophilic Rh-F bond.

4.
Org Process Res Dev ; 26(4): 1145-1151, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35573033

RESUMO

A new continuous-flow process is presented for synthesis of the pharmaceutical intermediate norketamine (5). Our approach has been to take the well-established and industrially applied batch synthetic route to this promising antidepressant precursor and convert it to a telescoped multi-stage continuous-flow platform. This involves the α-bromination of a ketone, an imination/rearrangement sequence with liquid ammonia, and a thermally induced α-iminol rearrangement. Our approach is high yielding and provides several processing advantages including the reduction of many of the hazards conventionally associated with this route, particularly in the handling of liquid bromine, hydrogen bromide gas, and liquid ammonia. Each of these presents serious operational challenges in a batch process at scale.

5.
Appl Spectrosc ; 76(5): 531-540, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35188427

RESUMO

Temperature measurement of internal components of a jet engine is a crucial control parameter to ensure its component life and efficiency. Particularly for thermal analysis of internal components of jet engines, irreversible thermochromic paints (TPs) have been developed at Rolls-Royce plc to evaluate the surface temperature of engine components where it is otherwise impossible. Thermochromic paints change color with respect to an increased temperature whereby the resulting change in the TP color corresponds to the maximum temperature experienced by the surface of engine components during testing. To improve the reliability and reproducibility of the temperature measurement by TPs, this work explored the potential use of diffuse reflection Fourier transform infrared spectroscopy (DRIFTS) combined with partial least squares regression (PLSR) analysis. The outcome of the prediction of the raw and pre-processed datasets was compared and discussed. The major contributors to the prediction models were the change in the property of the surface M-OH bonds, the structural change of the inorganic pigments and fillers, and their solid-state reaction at a higher temperature. The result showed improved reliability of the prediction model after the combined pre-process treatments with reported RMSEC of 4.5 °C and RMSECV of 13.0 °C using three latent variables.


Assuntos
Pintura , Análise de Fourier , Análise dos Mínimos Quadrados , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura
6.
Phys Chem Chem Phys ; 23(37): 20957-20973, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34545382

RESUMO

Ionic liquid (IL) valence electronic structure provides key descriptors for understanding and predicting IL properties. The ionisation energies of 60 ILs are measured and the most readily ionised valence state of each IL (the highest occupied molecular orbital, HOMO) is identified using a combination of X-ray photoelectron spectroscopy (XPS) and synchrotron resonant XPS. A structurally diverse range of cations and anions were studied. The cation gave rise to the HOMO for nine of the 60 ILs presented here, meaning it is energetically more favourable to remove an electron from the cation than the anion. The influence of the cation on the anion electronic structure (and vice versa) were established; the electrostatic effects are well understood and demonstrated to be consistently predictable. We used this knowledge to make predictions of both ionisation energy and HOMO identity for a further 516 ILs, providing a very valuable dataset for benchmarking electronic structure calculations and enabling the development of models linking experimental valence electronic structure descriptors to other IL properties, e.g. electrochemical stability. Furthermore, we provide design rules for the prediction of the electronic structure of ILs.

7.
Nat Commun ; 12(1): 4965, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404801

RESUMO

Using a magnetron sputtering approach that allows size-controlled formation of nanoclusters, we have created palladium nanoclusters that combine the features of both heterogeneous and homogeneous catalysts. Here we report the atomic structures and electronic environments of a series of metal nanoclusters in ionic liquids at different stages of formation, leading to the discovery of Pd nanoclusters with a core of ca. 2 nm surrounded by a diffuse dynamic shell of atoms in [C4C1Im][NTf2]. Comparison of the catalytic activity of Pd nanoclusters in alkene cyclopropanation reveals that the atomically dynamic surface is critically important, increasing the activity by a factor of ca. 2 when compared to compact nanoclusters of similar size. Catalyst poisoning tests using mercury and dibenzo[a,e]cyclooctene show that dynamic Pd nanoclusters maintain their catalytic activity, which demonstrate their combined features of homogeneous and heterogeneous catalysts within the same material. Additionally, kinetic studies of cyclopropanation of alkenes mediated by the dynamic Pd nanoclusters reveal an observed catalyst order of 1, underpinning the pseudo-homogeneous character of the dynamic Pd nanoclusters.

8.
ACS Catal ; 10(23): 13904-13912, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33343998

RESUMO

Rhodium nanoparticles (NPs) immobilized on imidazolium-based supported ionic liquid phases (Rh@SILP) act as effective catalysts for the hydrogenation of biomass-derived furfuralacetone. The structure of ionic liquid-type (IL) molecular modifiers was systematically varied regarding spacer, side chain, and anion to assess the influence on the NP synthesis and their catalytic properties. Well-dispersed Rh NPs with diameters in the range of 0.6-2.0 nm were formed on all SILP materials, whereby the actual size was dependent significantly on the IL structure. The resulting variations in catalytic activity for hydrogenation of the C=O moiety in furfuralacetone allowed control of the product selectivity to obtain either the saturated alcohol or the ketone in high yield. Experiments conducted under batch and continuous flow conditions demonstrated that Rh NPs immobilized on SILPs with suitable IL structures are more active and much more stable than Rh@SiO2 catalyst synthesized on unmodified silica.

9.
J Phys Chem B ; 124(30): 6657-6663, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32639150

RESUMO

X-ray photoelectron spectroscopy is used to investigate the impact of methylation on the electronic environment of pyridinium cations. Because of the electron-donating effect of the methyl group, there is a significant increase in electron density on the cationic nitrogen. The shift of the N 1s binding energy is inversely proportional to the anion basicity. The methylation position on the electronic environment of the cationic nitrogen is investigated. The N 1s binding energy follows the trend: 1-octylpyridinium > 1-octyl-3-picolinium > 1-octyl-4-picolinium > 1-octyl-2-picolinium, which is in good agreement with the cation acidity. The increase in the inductive effect subsequently weakens the cation-anion interactions through charge transfer from the anion to the cation, causing a subtle change in the electronic environment of the anion. Such an effect is noticeably reflected in the Br 3d binding energy. It shows that the Br 3d5/2 binding energy of 1-octyl-2-picolinium bromide is 0.2 eV lower than that of 1-octylpyridinium bromide.

10.
Phys Chem Chem Phys ; 22(30): 17394-17400, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32706005

RESUMO

In this study, X-ray photoelectron spectroscopy is used to probe the impact of the N3-substituted alkyl group on the electronic environment of the cation and the anion by comparing two types of imidazolium cations, 1-alkyl-3-butylimidazolium and 1-alkyl-3-methylimidazolium. Due to the more intense inductive effect changing from methyl to butyl, the electronic environment of the cationic nitrogen can be significantly affected, which is reflected in a shift of N 1s binding energy. The magnitude of the binding energy shift is found to be more pronounced in the case of the less basic anion and inversely proportional to the basicity of the anion. The increase of the N3-substituted alkyl chain length can also influence the charge-transfer effect from the anion to the cation. This gives rise to a change in the electronic environment of the anion. Such an impact is found to be concentrated on the anion-based component bearing more negative point charges.

11.
Phys Chem Chem Phys ; 22(21): 11976-11983, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32420557

RESUMO

In this study, nine piperidinium-based ionic liquids are analysed by X-ray photoelectron spectroscopy. The effect of alkyl substituent length and the nature of the anion on the electronic environment of the cation are investigated. The electronic environment of the hetero carbon and the cationic nitrogen is compared between two structurally similar cations, 1-octyl-1-methylpiperidinium ([C8C1Pip]+) versus 1-octylpyridinium ([C8Py]+). Due to the charge delocalisation, the hetero carbon component within [C8Py]+ is more positively charged, which exhibits much higher binding energy; whilst the cationic nitrogen component is in the similar electronic environment. The impact of the charge delocalisation on the electronic environment of the anion is also compared between [C8C1Pip]+ and [C8Py]+. It is found that for the more basic anion, the cation can significantly affect the electronic environment of the anion; for the less basic anion, such an effect concentrates on the component bearing more negative point charges.

12.
Phys Chem Chem Phys ; 22(3): 1624-1631, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31894776

RESUMO

The charge distribution associated with individual components in functionalised ionic liquids (ILs) can be tuned by careful manipulation of the substituent groups incorporated into the ions. Here we use X-ray photoelectron spectroscopy to investigate the impact of substituent atoms on the electronic structure of similar imidazolium-based systems each paired with a common anion, [Tf2N]-. The experimental measurements revealed an unexpected variation in the charge density distribution within the IL cation when the oxygen atom in a poly-ether containing side chain is moved by just one atomic position. This surprising observation is supported by density functional theory calculations.

13.
Phys Chem Chem Phys ; 21(21): 11058-11065, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31089620

RESUMO

In this study, eight 1-alkyl-2,3-dimethylimidazolium ionic liquids are analysed by X-ray photoelectron spectroscopy. The effect of both the anion and the cation on the electronic environment of cationic nitrogen regions is explored. It concludes that the cationic N 1s binding energy shifts to the lower value when the basicity of the anion increases or the acidity of the cation decreases. The impact of the cation acidity on the cation-anion interactions is demonstrated systematically by carefully comparing the binding energies of anion-based components for each anion. It is found that for more basic anions, the charge-transfer effect between counterions can be effectively shielded; for less basic anions, such an effect is negligible. The charge shielding effect of the alkyl substituent is also studied by using dodecyl-based ionic liquids, compared to 1-alkyl-3-methylimidazolium analogues. It suggests that long alkyl substituents can have a significant electron donating effect to the cation headgroup and thus effectively shield the charge-transfer effect between cations and anions.

14.
Phys Chem Chem Phys ; 21(1): 114-123, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30519695

RESUMO

X-ray photoelectron spectroscopy (XPS) is a powerful element-specific technique to determine the composition and chemical state of all elements in an involatile sample. However, for elements such as carbon, the wide variety of chemical states produce complex spectra that are difficult to interpret, consequently concealing important information due to the uncertainty in signal identity. Here we report a process whereby chemical modification of carbon structures with electron withdrawing groups can reveal this information, providing accurate, highly refined fitting models far more complex than previously possible. This method is demonstrated with functionalised ionic liquids bearing chlorine or trifluoromethane groups that shift electron density from targeted locations. By comparing the C 1s spectra of non-functional ionic liquids to their functional analogues, a series of difference spectra can be produced to identify exact binding energies of carbon photoemissions, which can be used to improve the C 1s peak fitting of both samples. Importantly, ionic liquids possess ideal chemical and physical properties, which enhance this methodology to enable significant progress in XPS peak fitting and data interpretation.

15.
Chem Commun (Camb) ; 54(81): 11403-11406, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30252003

RESUMO

It has been demonstrated that bonding and interactions within ionic liquids (ILs) can be elegantly tuned by manipulation of structure and the introduction of functional groups. Here we use XPS to investigate the impact of sulfur containing substituents on the electronic structure of a series of N-based cations, all with a common anion, [NTf2]-. The experiments reveal complexity and perturbation of delocalised systems which cannot be easily interpreted by NMR and XPS alone, DFT provides critical insight into bonding and underpins the assignment of spectra and development of deconstruction models for each system studied.

16.
Phys Chem Chem Phys ; 20(24): 16786-16800, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29888367

RESUMO

Thermal decomposition (TD) products of the ionic liquids (ILs) [CnC1Im][BF4] and [CnC1Im][PF6] ([CnC1Im]+ = 1-alkyl-3-methylimidazolium, [BF4]- = tetrafluoroborate, and [PF6]- = hexafluorophosphate) were prepared, ex situ, by bulk heating experiments in a bespoke setup. The respective products, CnC1(C3N2H2)BF3 and CnC1(C3N2H2)PF5 (1-alkyl-3-methylimidazolium-2-trifluoroborate and 1-alkyl-3-methylimidazolium-2-pentafluorophosphate), were then vaporized and analyzed by direct insertion mass spectrometry (DIMS) in order to identify their characteristic MS signals. During IL DIMS experiments we were subsequently able, in situ, to identify and monitor signals due to both IL vaporization and IL thermal decomposition. These decomposition products have not been observed in situ during previous analytical vaporization studies of similar ILs. The ex situ preparation of TD products is therefore perfectly complimentary to in situ thermal stability measurements. Experimental parameters such as sample surface area to volume ratios are consequently very important for ILs that show competitive vaporization and thermal decomposition. We have explained these experimental factors in terms of Langmuir evaporation and Knudsen effusion-like conditions, allowing us to draw together observations from previous studies to make sense of the literature on IL thermal stability. Hence, the design of experimental setups are crucial and previously overlooked experimental factors.

17.
Angew Chem Int Ed Engl ; 57(39): 12590-12591, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-29797468

RESUMO

"… How do we have a major impact on delivering sustainable chemistry? Carbon-neutral laboratories can drive down the environmental costs of chemistry. We propose that sustainable chemistry requires some overarching goal that can be embraced by everyone in the chemical supply chain as well as by the public …" Read more in the Guest Editorial by Martyn Poliakoff, Peter Licence, and Michael W. George.

18.
Phys Chem Chem Phys ; 18(21): 14359-69, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27166921

RESUMO

We present investigations into a variety of supporting electrolytes and supercritical fluids probing the phase and conductivity behaviour of these systems and show that they not only provide sufficient electrical conductivity for an electrodeposition bath, but match the requirements imposed by the different precursors and process parameters, e.g. increased temperature, for potential deposition experiments. The two supercritical fluids that have been explored in this study are difluoromethane (CH2F2) and 1,1-difluoroethane (CHF2CH3). For CH2F2, the phase behaviour and electrical conductivity of eight ionic compounds have been studied. Each compound consists of a cation and an anion from the selected candidates i.e. tetramethylammonium ([N(CH3)4](+)), tetrabutylammonium ([N((n)C4H9)4](+)), 1-ethyl-3-methylimidazolium ([EMIM](+)) and 1-butyl-3-methylimidazolium ([BMIM](+)) for cations, and tetrakis(perfluoro-tert-butoxy)aluminate ([Al(OC(CF3)3)4](-)), chloride (Cl(-)), trifluoromethyl sulfonimide ([NTf2](-)) and tris(pentafluoroethyl)trifluorophosphate ([FAP](-)) for anions. For CHF2CH3, [N((n)C4H9)4][BF4] and [N((n)C4H9)4][B{3,5-C6H3(CF3)2}4] have been investigated for comparison with the previously measured solubility and conductivity in CH2F2. We have found that [N((n)C4H9)4][Al(OC(CF3)3)4], [N((n)C4H9)4][FAP] and [N(CH3)4][FAP] have much higher molar conductivity in scCH2F2 at similar conditions than [N((n)C4H9)4][BF4], a widely used commercial electrolyte. Additionally, scCHF2CH3 shows potential for use as the solvent for supercritical fluid electrodeposition, especially at high temperatures since high density of this fluid can be achieved at lower operating pressures than similar fluids that can be used to produce electrochemical baths with comparable conductivity.

19.
Phys Chem Chem Phys ; 18(8): 6122-31, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26846969

RESUMO

A series of ammonium- and phosphonium-based ionic liquids have been probed using X-ray photoelectron spectroscopy (XPS) with a high energy Ag Lα' X-ray source. The capability of the Ag Lα' X-ray source for ionic liquid analysis is confirmed alongside the characterisation of previously undetected high energy core photoelectron emissions. Additionally, the utilisation of the Ag Lα' X-ray source as a depth profiling technique (ERXPS) to investigate the structure of the ionic liquid/vacuum interface has been demonstrated, with comparison made to angle resolved X-ray photoelectron spectroscopy (ARXPS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...